On Instrumental Variables Estimation of Causal Odds Ratios

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses.

In this paper, the authors describe different instrumental variable (IV) estimators of causal risk ratios and odds ratios with particular attention to methods that can handle continuously measured exposures. The authors present this discussion in the context of a Mendelian randomization analysis of the effect of body mass index (BMI; weight (kg)/height (m)(2)) on the risk of asthma at age 7 yea...

متن کامل

Estimation of cumulative odds ratios.

PURPOSE Standard estimation of ordered odds ratios requires the constraint that the etiologic effects of exposure are homogenous across thresholds of the ordered response. We present a method to relax this often-unrealistic constraint. METHODS The kernel of the proposed method is the expansion of observed data into "person-thresholds." Using standard statistical software, for each subject we ...

متن کامل

Estimation with Many Instrumental Variables∗

Using many valid instrumental variables has the potential to improve efficiency but makes the usual inference procedures inaccurate. We give corrected standard errors, an extension of Bekker (1994) to nonnormal disturbances, that adjust for many instruments. We find that this adujstment is useful in empirical work, simulations, and in the asymptotic theory. Use of the corrected standard errors ...

متن کامل

Applied Nonparametric Instrumental Variables Estimation

Instrumental variables are widely used in applied econometrics to achieve identification and carry out estimation and inference in models that contain endogenous explanatory variables. In most applications, the function of interest (e.g., an Engel curve or demand function) is assumed to be known up to finitely many parameters (e.g., a linear model), and instrumental variables are used identify ...

متن کامل

Assessing bias in the estimation of causal effects: Rosenbaum bounds on matching estimators and instrumental variables estimation with imperfect instruments

Propensity score matching provides an estimate of the effect of a “treatment” variable on an outcome variable that is largely free of bias arising from an association between treatment status and observable variables. However, matching methods are not robust against “hidden bias” arising from unobserved variables that simultaneously affect assignment to treatment and the outcome variable. One s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Science

سال: 2011

ISSN: 0883-4237

DOI: 10.1214/11-sts360